Modelización de la variabilidad muestral en diferentes metodologías de la inferencia

##plugins.themes.bootstrap3.article.main##

Carmen Batanero https://orcid.org/0000-0002-4189-7139
Nuria Begué https://orcid.org/0000-0003-1369-8711
Silvia M. Valenzuela-Ruiz https://orcid.org/0000-0001-7467-8672

Resumen

La inferencia estadística permite extender los resultados obtenidos en el estudio de muestras a las poblaciones de donde dichas muestras han sido recogidas. La enseñanza actual privilegia la metodología frecuencial, basada en la consideración de la distribución muestral del estadístico y en la que se han descrito numerosas dificultades de interpretación de alumnos y profesionales. En la práctica estadística, sin embargo, se utilizan otras modelizaciones, como la bayesiana y el remuestreo y, recientemente, se incorpora en la enseñanza el enfoque denominado inferencia informal. El objetivo de este trabajo es analizar la forma en que la variabilidad muestral se tiene en cuenta en estas diferentes modelizaciones. Utilizando elementos del enfoque ontosemiótico, se muestra que el aprendizaje se concentra en diferentes objetos matemáticos, pero que en todas ellas la modelización tiene un peso importante. También se interpretan como conflictos semióticos algunos errores frecuentes en el aprendizaje de la inferencia. Se finaliza con algunas reflexiones sobre la enseñanza de la inferencia estadística.



##plugins.themes.bootstrap3.article.details##

Sección
Investigación
Citas

Batanero, C. (2003). La simulación como instrumento de modelización en probabilidad. Educación y Pedagogía, 15(35), 3754.


Batanero, C. y Borovcnick, M. (2016). Statistics and probability in high school. Sense Publishers.






Batanero, C., Díaz-Batanero, C. y López-Martín, M. M. (2017). Significados del contraste de hipótesis, configuraciones epistémicas asociadas y algunos conflictos semióticos. Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Disponible en: enfoqueontosemiotico.ugr.es/civeos.html  


Batanero, C. Díaz-Batanero, C., López-Martín, M.M. y Roldán, A. F. (2020). Interval estimation: methodological approaches and understanding difficulties. BEIO, Boletín de Estadística e Investigación Operativa, 36(3), 269-291. 


Biehler, R., Frischemeier, D. y Podworny, S. (2017). Reasoning about models and modelling in the context of informal statistical inference. Statistics Education Research Journal, 16(2), 8-12. 


Blomhøj, M. y Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications 220, 123-139. https://doi.org/10.1093/teamat/22.3.123


Blum, W., Galbraith, P. L., Henn, H. W. y Niss, M. (2007). Modelling and applications in mathematics education. Springer. https://doi.org/10.1007/978-0-387-29822-1_59 


Bolstad, W. (2013). Introduction to Bayesian statistics, 2ª ed. Wiley.  


Borovcnik, M. (2019). Informal and “informal” inference. Actas del Tercer Congreso Internacional Virtual de Educación Estadística. Disponible en www.ugr.es/local/fqm126/civeest.html 


Burrill, G. y Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. En C. Batanero, G. Burrill, y C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A Joint ICMI/IASE Study (pp. 57-69). Springer.


Case, C. y Jacobbe, T. (2018). A framework to characterize student difficulties in learning information from a simulation-based approach, Statistics Education Research Journal, 17(2), 9-29. https://doi.org/10.52041/serj.v17i2.156


Castro-Sotos, A. E., Vanhoof, S., Noortgate, W. y Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98-113. https://doi.org/10.1016/j.edurev.2007.04.001


Cevikbas, M., Kaiser, G. y Schukajlow, S. A. (2022). Systematic literature review of the current discussion on mathematical modelling competencies: State of the art developments in conceptualizing, measuring, and fostering. Educational Studies in Mathematics 109, 205–236 (2022). https://doi.org/10.1007/s10649021101046


Chaput, B., Girard, J. C. y Henry, M. (2011). Frequentist approach: Modelling and simulation in statistics and probability teaching. En C. Batanero, G. Burrill y C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A Joint ICMI/IASE Study (pp. 85-95). Springer. https://doi.org/10.1007/978-94-007-1131-0_12


Cabriá, S. (1994). Filosofía de la estadística. Servicio de Publicaciones de la Universidad de Valencia.Cobb, G. W. (2007). The introductory statistics course: A Ptolemaic curriculum. Technology Innovations in Statistics Education, 1(1), 115. https://doi.org/10.5070/T511000028


Council of Chief State School Officers, CCSSO (2010). Common core state standards for mathematics. Council of Chief State School Officers: Disponible en: http://www.corestandards.org/Math/


de la Fuente, E. I. y Díaz-Batanero, C. (2004). Controversias en el uso de la inferencia en la investigación experimental. Metodología de las Ciencias del Comportamiento, 5(esp. 1), 161-167.


Díaz-Batanero, C. (2007). Viabilidad de la enseñanza de la inferencia bayesiana en el análisis de datos en psicología. Tesis doctoral. Universidad de Granada.


Doerr, H.M., Ärlebäck J.B. y Misfeldt M. (2017). Representations of modelling in mathematics education. En: Stillman G., Blum W. y Kaiser G. (Eds.), Mathematical modelling and applications. International perspectives on the teaching and learning of mathematical modelling (pp. 71-81). Springer


Doerr, H. M., Delmas, R. y Makar, K. (2017). A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, 16(2), 86-115. https://doi.org/10.52041/serj.v16i2.186


Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 529-563.


Efron, B. y Tibshirani, R. J. (1993). An introduction to the bootstrap.


Chapman.Eichler, A. y Vogel, M. (2014). Three approaches for modelling situations with randomness. En E. Chernoff y B. Sriraman (Eds.), Probabilistic thinking (pp. 75-99). Springer. https://doi.org/10.1007/9789400771550_4


Gigerenzer, G. (1993). The superego, the ego and the id in statistical reasoning. En G. Keren y C. Lewis (Eds.), A handbook for data analysis in the behavioural sciences: Methodological issues (pp. 311-339).


Erlbaum.Godino, J. D. (1996). Mathematical concepts, their meanings and understanding. En L. Puig y A. Gutiérrez (Eds.), Proceedings of the 20th PME Conference (Vol. 2, pp. 417-424). Universidad de Valencia.


Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathematiques, 22(23), 237-284.


Godino, J., Batanero, C. y Font, V. (2007). The ontosemiotic approach to research in mathematics education. ZDM - Mathematics Education, 39(12), 127-135. https://doi.org/10.1007/s1185800600041


Godino, J., Batanero, C. y Font, V. (2019). The ontosemiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 38-43.


Godino, J. D., Burgos, M. y Gea, M. M. (2021). Analysing theories of meaning in mathematics education from the ontosemiotic approach. International Journal of Mathematical Education in Science and Technology, 128. https://doi.org/10.1080/0020739X.2021.1896042


Hacking, I. (2006). The emergence of probability. A philosopfhical study of early ideas about probability, induction and statistical inference. Cambridge University Press.


Harradine, A., Batanero, C., y Rossman, A. (2011). Students and teachers’ knowledge of sampling and inference. En C. Batanero, G. Burrill, y C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A Joint ICMI/IASE Study (pp. 235-246).


Springer.Hald, A. (2008). A history of parametric statistical inference from Bernoulli to Fisher, 1713-1935. Springer.


Hall, P. (2003) A short prehistory of the Bootstrap. Statistical Science, 18, 158–167.


Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6(2), 187-205.


Henry, M. (1997). Notion de modele et modélization en l'enseignement. En M. Henru (Ed.), Enseigner les probabilités au lycée (pp. 77-84.) Commission Inter-IREM.


Jones, G. A. y Thornton, C. A. (2005). An overview of research into the teaching and learning of probability. En G. Jones (Ed.), Exploring probability in school (pp. 65-92). Springer. https://doi.org/10.1007/0-387-24530-8_4


Kula, F. y Koçer, R. G. (2020). Why is it difficult to understand statistical inference? Reflections on the opposing directions of construction and application of inference framework. Teaching Mathematics and its Applications, 39(4), 248-265. https://doi.org/10.1093/teamat/hrz014


Ledesma, R. (2008). Introduccción al Bootstrap. Desarrollo de un ejemplo acompañado de software de aplicación. Tutorials in Quantitative Methods for Psychology, 4(2), 51-60.


Lecoutre, B., Lecoutre M. P. y Poitevineau J. (2007). Uses, abuses and misuses of significance tests in the scientific community: Won't the Bayesian choice be unavoidable? International Statistical Review, 69, 399-418. https://doi.org/10.1111/j.1751-5823.2001.tb00466.x


Lehrer, R. y Schauble, L. (2010). What kind of explanation is a model? En M. K. Stein (Eds.), Instructional explanations in the disciplines (pp. 9-22). Springer. https://doi.org/10.1007/978-1-4419-0594-9


Lenhard, J. (2006). Models and statistical inference: The controversy between Fisher and Neyman–Pearson. The British journal for the philosophy of science, 57, 69-91.


Lipson, K. (2003) The role of the sampling distribution in understanding statistical inference. Mathematics Education Research Journal, 15, 270–287. https://doi.org/10.1007/BF03217383


Lu, X. y Kaiser, G. (2022). Creativity in students’ modelling competencies: conceptualisation and measurement. Educational Studies in Mathematica, 109, 287–311. https://doi.org/10.1007/s1064902110055y


Makar, K. y Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82-105.


Makar, K. y Rubin, A. (2018). Learning about statistical inference. En D. BenZvi, K, Makar y J.B. Garfield (Eds), International handbook of research in statistics education (pp. 261-294). Springer. https://doi.org/10.1007/9783319661957_8


Ministerio de Educación, Cultura y Deporte, MECD (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Madrid: Autor


Ministerio de Educación y Formación Profesional, MEFP (2022a). Real Decreto157/2022, de 1 de marzo, porel que se establece la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 52, 1-109.


Ministerio de Educación y Formación Profesional, MEFP (2022b). Real Decreto 217/2022, de 29 de marzo, porel que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. Boletín Oficial del Estado, 76, 41571-41789.


Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy. Psychological methods, 5(2), 241. https://doi.org/10.1037/1082-989X.5.2.241


Niss, M y Blum, W. (2019). The learning and teaching of mathematical modelling. Routledge.


OECD (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD.


Rivadulla, A. (1991). Probabilidad e inferencia científica. Barcelona: Anthropos.


Rossman, A. J. (2008). Reasoning about informal statistical inference: One statistician's view. Statistics Education Research Journal, 7(2), 5-19.


Saldanha, L. A. y Thompson, P. W. (2002) Conceptions of sample and their relationship to statistical inference. Educational Studies in Mathematics, 51, 257–270. https://doi.org/10.1023/A:1023692604014


Schukajlow, S., Kaiser, G. y Stillman, G. (2018). Empirical research on teaching and learning of mathematical modelling: A survey on the current state-of-the-art. ZDM - Mathematics Education, 50(1), 5-18. https://doi.org/10.1007/s11858-018-0933-5


Pfannkuch, M., BenZvi, D. y Budgett, S. (2018). Innovations in statistical modeling to connect data, chance and context. ZDM, 50(7), 1113-1123. https://doi.org/10.1007/s11858-018-0989-2


Pfannkuch, M., y Ziedins, I. (2014). A modelling perspective on probability. En E. Chernoff y B. Sriraman (Ed,), ProbabilisticThinking (pp. 101-116). Springer.


Watson, J. y Chance, B. (2012). Building intuitions about statistical inference based on resampling. Australian Senior Mathematics Journal, 26(1), 6-18.


Zieffler, A., Garfield, J. B., del Mas, R. y Reading, C. (2008). A framework to support research on informal inferential reasoning. Statistics Education Research Journal, 7(2), 5-19.